Exponential Runge-Kutta Methods for Stiff Kinetic Equations

نویسندگان

  • Giacomo Dimarco
  • Lorenzo Pareschi
چکیده

Abstract. We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Time Differencing for Stiff Systems

We develop a class of numerical methods for stiff systems, based on the method of exponential time differencing. We describe schemes with secondand higher-order accuracy, introduce new Runge–Kutta versions of these schemes, and extend the method to show how it may be applied to systems whose linear part is nondiagonal. We test the method against other common schemes, including integrating facto...

متن کامل

Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy

We consider the development of exponential methods for the robust time discretization of space inhomogeneous Boltzmann equations in stiff regimes. Compared to the space homogeneous case, or more in general to the case of splitting based methods, studied in Dimarco Pareschi [6] a major difficulty is that the local Maxwellian equilibrium state is not constant in a time step and thus needs a prope...

متن کامل

Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations

In this paper we define unconditional stability properties of exponential Runge-Kutta methods when they are applied to semi-linear systems of ordinary differential equations characterized by a stiff linear part and a nonstiff non-linear part. These properties are related to a class of systems and to a specific norm. We give sufficient conditions in order that an explicit method satisfies such p...

متن کامل

GPU Implementation of Implicit Runge-Kutta Methods

Runge-Kutta methods are an important family of implicit and explicit iterative methods used for the approximation of solutions of ordinary differential equations. Explicit RungeKutta methods are unsuitable for the solution of stiff equations as their region of stability is small. Stiff equation is a differential equation for which certain numerical methods for solving the equation are numerical...

متن کامل

Implicit Runge - Kutta Integration of the Equations of Multibody Dynamics in Descriptor Form

Implicit Runge-Kutta integration algorithms based on generalized coordinate partitioning are presented for numerical solution of the differential-algebraic equations of motion of multibody dynamics. Second order integration formulas are derived from well known first order Runge-Kutta integrators, defining independent generalized coordinates and their first time derivative as functions of indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2011